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We consider parametric amplification of two-dimensional spatial soliton oscillations in longitudinally modu-
lated harmonic and Bessel lattices in Kerr-type saturable medium. We show that soliton center oscillations
along different axes in two-dimensional lattices are coupled, which gives rise to a number of interesting
propagation scenarios including periodic damping and excitation of soliton oscillations along perpendicular
axes, selective amplification of soliton oscillations along one transverse axis, and enhancement of soliton
spiraling.
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Solitons in optically induced lattices were predicted and
experimentally observed in photorefractive crystals in one
and two transverse dimensionsf1–4g. In photorefractive ma-
terials harmonic lattices are usually formed by the interfer-
ence pattern of several plane waves whose intensity and in-
tersection angles define the lattice depth and period. Such
lattices may be used for engineering of systems with tunable
discreteness since they can operate in both regimes of weak
and strong coupling between neighboring sites depending on
the depth and period of refractive index modulation. Analo-
gously to their discrete counterpartsf5g, lattice solitons can
be used for a number of practical applications including all-
optical switching and power-dependent soliton steeringf6g.
Properties of single solitons and soliton complexes supported
by one- and two-dimensional optical lattices are now well
establishedf7–13g. Lately, we have addressed properties of
solitons supported by radially symmetric Bessel latticesf14g.
Such lattices could be photoinduced by nondiffracting zero-
order Bessel beams and offer many new opportunities in-
cluding control of soliton interactions in different lattice
rings and the possibility to set solitons into controllable ro-
tary motion.

It was demonstrated recently that the presence of shallow
longitudinalmodulation of linear refractive index profoundly
affects properties of solitons trapped in the guiding channel
of a one-dimensional optical latticef15,16g. In particular,
parametric amplification of transverse oscillations and ampli-
tude oscillations of spatial solitons is possible under appro-
priate conditions. The former effect can be potentially used
for controllable soliton steering and fine-tuning of soliton
inclination angle at the output face of the crystal. Two-
dimensional generalization of this technique is far from be-
ing trivial because of the presence of the second transverse
dimension, hence more complicated soliton trajectories.
Moreover, despite the fact that in the absence of longitudinal
modulation harmonic and Bessel lattices can support stable
two-dimensional solitons even in a cubic medium, the open
question is whether a two-dimensional soliton is sufficiently
robust to survive under remarkable longitudinal modulation
of the linear refractive index which is necessary for effective

parametric amplification of the soliton oscillations.
In this paper we show that a considerable parametric am-

plification of soliton oscillations can be achieved in the two-
dimensional case when small nonlinearity saturation is taken
into account. We have found that transverse oscillations of
the soliton center are coupled even in the absence of longi-
tudinal modulation. This coupling is strong if frequencies of
soliton beam oscillations along both transverse axes coin-
cide; otherwise, it is weak and parametric amplification of
soliton center oscillations along a selected axis is possible.
We discuss some potential practical applications of paramet-
ric amplification of soliton oscillations.

Our analysis is based on the nonlinear Schrödinger equa-
tion describing propagation of a laser beam in a medium
with focusing Kerr-type saturable nonlinearity and spatial
modulation of refractive index along longitudinal and trans-
verse directions
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Here,qsh ,z ,jd is the slowly varying dimensionless complex
amplitude of the light field, transverseh ,z, and longitudinal
j coordinates are scaled in terms of beam radius and diffrac-
tion length, respectively,S is the saturation parameter, guid-
ing parameterp is proportional to the refractive index modu-
lation depth in the transverse direction, and the functions
Rsh ,zd andQsjd describe transverse and longitudinal refrac-
tive index profiles. Further, we suppose that longitudinal
variation of refractive index is described by the harmonic
function Qsjd=1−m cossVjjd, where the parameterm,1
andVj is the spatial frequency of longitudinal refractive in-
dex modulation. We consider two types of transverse profiles
of refractive index: the harmonic one withRHsh ,zd
=cossVhhdcossVzzd, where Vh ,Vz are transverse spatial
modulation frequencies, and the Bessel oneRBsh ,zd
=J0(s2blind1/2r), where r =sh2+z2d1/2 is the radius, and pa-
rameterbbin is the corresponding scaling factorfsee Fig. 1sad
and 1sbdg. The depth of refractive index modulation is as-
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sumed to be small compared with the unperturbed refractive
index, and is of the order of nonlinear contribution due to the
Kerr effect. Longitudinal modulation is supposed to be weak
and smooth, which enables one to neglect the reflected wave.
In practice, the refractive index modulation in the transverse
direction can be induced optically in photorefractive crystals
with several interfering plane wavesf1–4g or with nondif-
fracting Bessel beamsf14g. Longitudinal modulation can be
created in such media with spatially periodic background
illumination along thej axis. Though in the case of real
photorefractive crystal the model equation describing soliton
propagation would be more complicated than Eq.s1d, since
the refractive index profile will also depend on the level of
saturation, we expect that simplified models1d adequately
describes the main qualitative features of soliton oscillations.
Notice that the total energy flow
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`

uqu2dhdz, s2d

remains constant upon propagation.
In the absence of longitudinal refractive index modula-

tion, Eq. s1d possesses soliton solutionsf7–14g. Here, we
recall basic properties of fundamental solitons. Soliton solu-
tions can be found in the formqsh ,z ,jd=wsh ,zdexpsibjd,
wherewsh ,zd is the real function, andb is the propagation
constant. Substitution of this expression into Eq.s1d yields
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Mathematically, families of soliton solutions of Eq.s3d are
defined by parametersp,S,b, and transverse configuration of
the lattice. Thus, the fundamental soliton supported by the

Bessel lattice is radially symmetric and the position of its
intensity maximum coincides with the center of the lattice,
while in harmonic lattices the soliton can be supported by
either guiding site of the lattice. Here, we found correspond-
ing soliton profiles numerically using the standard relaxation
method. Typically we used a discretization scheme with
102431024 points per soliton profile; the transverse step
was set todh=dz=0.02. Zero boundary conditions were
implemented. The progressive iterations in the relaxation
method were carried out until the relative difference between
profiles on two successive iterations decreased below 10−20.
The accuracy of calculations was checked by doubling the
number of points per profile as well as by expanding the
computation windowsfor broad solitonsd. The energy flow of
solitons supported by Bessel and harmonic lattices versus
propagation constant is shown in Fig. 1scd for different val-
ues of the saturation parameter. For convenience of compari-
son we selected the scaling factorblin for the Bessel lattice in
such a way that the first zero of the Bessel lattice coincides
with that of the harmonic onefFig. 1sad and 1sbdg. Energy
flows UB,H of solitons supported by lattices of both types
grow monotonically with increase ofb, which indicates soli-
ton stability f14g for chosen lattice parameters. Dispersion
curvesUBsbd andUHsbd are quite similar and differ notably
only near a lower cutoff for soliton existence where the soli-
ton spreads over many lattice sites and exact periodicity of
harmonic lattice and decaying behavior of the tail of the
Bessel lattice play a crucial role. As one can see from Fig.
1scd, the cutoff for solitons supported by Bessel lattices is a
bit lower than that for solitons in harmonic lattices.

While exact solitons whose intensity maximum position
coincides with the maximum of the lattice will propagate in
a stable way without any distortions, the small transverse
displacement or tilt of the input soliton with respect to the
lattice causes oscillations of the beam center in the transverse
plane upon propagation. Further, for illustration of the main
propagation scenarios of solitons in modulated lattices we
solve Eq.s1d with an input condition

qsh,z,j = 0d = wsh − h0,z − z0dexpsiahh + iazzd, s4d

wherewsh ,zd is the exact soliton solution,h0,z0 are initial
shifts along theh- andz axes, andah ,az are input angles.

To understand multidimensional dynamics of tilted or
shifted soliton beams in optical lattices, one can use an ef-
fective particle approachf15,16g, based on equations of mo-
tion for integral coordinates of the beam center
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Here, integral coordinateskhl=U−1e−`
` e−`

` huqu2 dhdz and
kzl=U−1e−`

` e−`
` zuqu2 dhdz, and Eq. s5d are derived in the

limit of cubic nonlinearity atS→0. The approach requires
the substitution of a trial expression for the beam profile in
the right sides of Eq. s5d. We use Gaussian beam

FIG. 1. sad Harmonic andsbd Bessel optical lattices. Harmonic
lattice is shown forVh=Vz=1, while Bessel lattice corresponds to
blin =1.172.scd Energy flow versus propagation constant for solitons
supported by BesselsUBd and harmonicsUHd lattices at different
values of saturation parameter andp=5. All quantities are plotted in
arbitrary dimensionless units.
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uqsh ,z ,jdu=q0 expf−xh
2sh−khld2gexpf−xz

2sz−kzld2g, where
xh ,xz are form factors andq0 is the amplitude. In the sim-
plest case of harmonic lattice, one gets

d2

dj2khl + f1 − m cossVjjdgWGVh cossVzkzldsinsVhkhld = 0,

s6d
d2

dj2kzl + f1 − m cossVjjdgWGVz cossVhkhldsinsVzkzld = 0.

Here, the parameter

WG = p expf− sVh
2/xh

2 + Vz
2/xz

2d/4g, s7d

depends on the ratio between the characteristic lattice and
beam scales, as well as on the depth of the lattice. In opti-
cally induced lattices this parameter can be fine-tuned by
changing the lattice depth. This enables one to control dy-
namics of soliton motion effectively inside the lattice for the
same input profiles. Notice that other trial expressions for
beam profile lead to very similar equations for soliton center
coordinates. As one can see from Eq.s6d, there is a straight-
forward analogy between equations of soliton movement in
harmonic lattice and equations of motion for coupled para-
metrically driven pendulums. For the simplest case,m=0 and
small initial soliton center displacements alongh andz axes,
oscillations in these directions are independent, almost peri-
odic, and occur at certain frequencies given byWG

1/2Vh and
WG

1/2Vz, respectively, that can be termed frequencies of free
oscillations. Notice that for the Bessel lattice the frequency
of free oscillationsV0 is unique because of the radial sym-
metry of the lattice. For the case of relatively narrow solitons
sblin

1/2!xh ,xzd this frequency can be roughly estimated as
V0<spblind1/2expf−blin /4xh

2g, assuming thatxh=xz.
However, even atm=0 large-amplitude oscillations of the

soliton center along theh- andz axes become coupled. This
is an essentially new feature of two-dimensional soliton os-
cillations in optical lattices in comparison with this phenom-
enon in one-dimensional latticesf15g. If large-amplitude os-
cillations along theh axis occur approximately at the same
frequency as small-amplitude ones along thez axis si.e.,
when Vh=Vzd, the parametric resonance arises. Such
parametric-type interaction opens an opportunity to trans-
form effectively large-amplitudeh oscillations into oscilla-
tions along thez axis fFig. 2sadg. This process repeats peri-
odically in j and looks like amplitude beatings. Notice that
under appropriate conditions predictions of the effective par-
ticle modelfEq. s6dg are in a reasonable agreement with re-
sults of direct integration of Eq.s1d with input conditionss4d.
Thus, atm=0, Vh=Vz=1, p=6, h0=1, z0=0.1, ah=az=0,
and for a soliton beam corresponding tob=7 andS=0.1, the
difference between oscillation beating lengthLb<47.9 ob-
tained from Eq.s1d andLb obtained on the basis of Eq.s6d
for the Gaussian input beam with the same energy flow is
about 13%.

A more complicated situation occurs in lattices with lon-
gitudinal refractive index modulation. In such lattices the
soliton center starts to oscillate with exponentially growing
amplitude provided that the first parametric resonance con-
dition Vj<2V0 is satisfiedshere,V0 is the frequency of free

oscillationsd. The simplest case corresponds to the absence of
coupling betweenh- andz oscillations. This can be achieved
when the soliton is initially shifted along only one of the
transverse axes and oscillations occur in one planefFig.
2sbdg. Notice that growth of the oscillation amplitude leads to
diminishing of the instantaneous frequency, and the system
escapes from the condition of parametric resonance. This
results in periodic inj decay and growth of soliton oscilla-
tions sor beatingsd. In this case the effective particle ap-
proach also offers quite a realistic estimate for beating length
and maximal value of transverse displacement of the soliton
center. For example, atm=0.1, Vh=Vz=1, p=6, h0=0.1,
z0=0, ah=az=0, and for a soliton withb=7, S=0.1, the
relative difference in calculation of beating length in the
frames of two approaches is around 11%, and accuracy of
calculation of the maximal value of transverse displacement
of the soliton center is around 2.5%.

Another opportunity to avoid the coupling betweenh-
andz oscillations is related with “selective” amplification of
oscillations in only one of the transverse directions. This
becomes possible when the frequencies of free oscillations
for orthogonal axes are differentsas in a harmonic lattice

FIG. 2. sColor onlined. sad Transformation of soliton center os-
cillations along theh axis into oscillations along thez axis in the
harmonic lattice without longitudinal refractive index modulation at
Vh=Vz=1 andp=5.8. Input conditions areh0=0.8, z0=0.08, ah

=az=0. sbd Resonant parametric amplification of soliton oscilla-
tions along thez axis in longitudinally modulated Bessel lattice at
blin =1.172,p=5, m=0.1. Input conditions areh0=0, z0=0.05, ah

=az=0. In sad and sbd soliton beams correspond tob=7 and S
=0.1. All quantities are plotted in arbitrary dimensionless units.
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with VhÞVzd and the parametric resonance condition is ful-
filled along only one axis. Figure 3sad illustrates the process
of the selective parametric amplification.

The most complicated situation occurs when the process
of parametric amplification is accompanied by coupling be-
tween large-amplitude oscillations along theh- and z axes.
To realize such a regime we shifted an input soliton along the
z axis and simultaneously tilted it along theh axis. In the
absence of longitudinal modulation a soliton follows a closed
elliptical sor circular in a particular cased trajectory, thus per-
forming steady spiraling. Parametric amplification results in
growth of the radius of the spiral trajectory on the initial
stage of propagation. Finally, the spiral trajectory transforms
into a zigzag one, which means that oscillations along theh-
and z axes, which were initially phase shifted byp /2, be-
come phase matchedfFig. 3sbdg. After this stage of propaga-
tion the system escapes from the parametric resonance con-
dition and the trajectory transforms into the elliptical one.

The parametric amplification of two-dimensional soliton
oscillations can be effectively used for the detection of the
very small displacement and/or tilt of the input beam. For

instance, in the longitudinally modulated Bessel lattice the
initial displacement less than 1% of the beamwidth might be
amplified parametrically up to the beamwidth, as illustrated
in Fig. 4sad sthe white circle shows the first zero of the
Bessel latticed. Moreover, the parametric amplification can
be used for fine-tuning of the output tilt angle, while selec-
tive amplification can be used to enhance soliton oscillations
in the desired direction.

The key result of this work is summarized in Fig. 4sbd,
showing the resonance curve for transverse oscillations of a
two-dimensional soliton in the longitudinally modulated
Bessel lattice, i.e., dependence of the ratio between maximal
dmax and inputd0 values of transverse soliton displacement
d=skhl2+kzl2d1/2 on relative frequency detuningn=s2V0

−Vjd /2V0. This dependence has the form of a classical
asymmetric parametric resonance curve for an oscillator with
“soft” sine-type nonlinearity. The maximum value of para-
metric amplification is reached at a small negative value of
frequency detuning. It should also be mentioned that the
resonance curve is relatively narrow, which allows highly
selective amplification. We also want to stress that, for a
fixed frequency of longitudinal modulationVj, the paramet-
ric resonance conditions can be achieved by tuning the lattice
depthp, since frequency of free oscillationsV0 depends on
the lattice depth, as follows from Eqs.s6d and s7d. Notice
that oscillations of two-dimensional soliton are accompanied
by radiation, but its rate is substantially reduced with growth
of nonlinearity saturation and soliton energy flow.

In conclusion, we showed that in harmonic and Bessel
lattices imprinted in Kerr-type saturable medium it is pos-
sible to achieve considerable parametric-type amplification
of soliton oscillations in the guiding lattice channel. This
effect may find applications for controllable soliton steering,
for detection of submicron beam displacement and extremely
small misalignments.

This work has been partially supported by the Govern-
ment of Spain through Grant No. BFM2002-2861 and by the
Ramon-y-Cajal program.

FIG. 3. sColor onlined. sad Selective resonant parametric ampli-
fication of soliton oscillations along theh axis in longitudinally
modulated harmonic lattice atVh=1, Vz=1.5,p=5.8,m=0.2. Input
conditions areh0=z0=0.01,ah=az=0. sbd Complex soliton center
trajectory in longitudinally modulated Bessel lattice atblin =1.172,
p=5, m=0.1. Input conditions areh0=0, z0=0.05,ah=0.1, az=0.
In sad and sbd soliton beams correspond tob=7 and S=0.1. All
quantities are plotted in arbitrary dimensionless units.

FIG. 4. sad Snapshot images showing maximal soliton displace-
ments in positive and negative directions of thez axis in longitudi-
nally modulated Bessel lattice. Input conditions areh0=0, z0

=0.05, ah=az=0. sbd Maximal soliton displacement in longitudi-
nally modulated Bessel lattice versus detuning. Input conditions are
h0=0, z0=0.05,ah=0.1, az=0. In sad and sbd blin =1.172,p=5, m
=0.1, and soliton beams correspond tob=7 andS=0.1. All quanti-
ties are plotted in arbitrary dimensionless units.
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