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Oscillations of two-dimensional solitons in harmonic and Bessel optical lattices
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We consider parametric amplification of two-dimensional spatial soliton oscillations in longitudinally modu-
lated harmonic and Bessel lattices in Kerr-type saturable medium. We show that soliton center oscillations
along different axes in two-dimensional lattices are coupled, which gives rise to a number of interesting
propagation scenarios including periodic damping and excitation of soliton oscillations along perpendicular
axes, selective amplification of soliton oscillations along one transverse axis, and enhancement of soliton
spiraling.
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Solitons in optically induced lattices were predicted andparametric amplification of the soliton oscillations.
experimentally observed in photorefractive crystals in one In this paper we show that a considerable parametric am-
and two transverse dimensiofis-4]. In photorefractive ma- plification of soliton oscillations can be achieved in the two-
terials harmonic lattices are usually formed by the interferdimensional case when small nonlinearity saturation is taken
ence pattern of several plane waves whose intensity and ifinto account. We have found that transverse oscillations of
tersection angles define the lattice depth and period. Sugihe soliton center are coupled even in the absence of longi-
lattices may be used for engineering of systems with tunabl@,ginal modulation. This coupling is strong if frequencies of
discreteness since they can operate in both regimes of wedgjiton heam oscillations along both transverse axes coin-
and strong coupling between neighboring sites depending ogge. otherwise, it is weak and parametric amplification of
the depth and period of refractive index modulation. Analo-gjiton center oscillations along a selected axis is possible.

ggufsli(;of;?irnﬂ'ﬁcggﬁeofcoﬁgéﬁﬁg@ :%tgggnzﬂlgaﬂsdiﬁana”_We discuss some potential practical applications of paramet-
P pp 9 al4ic amplification of soliton oscillations.

optical switching and power-dependent soliton steeffig d Our analysis is based on the nonlinear Schrédinger equa-
e

Properties of single solitons and soliton complexes support don d ! i fal b ) di
by one- and two-dimensional optical lattices are now well'O" GESCIDING propagation of a faser béam in a medium

established7-13) Lately, we have addressed properties ofWith foc_using Kerr—type .saturable nonlin.eari.ty and spatial
solitons supported by radially symmetric Bessel lattides. modulation of refractive index along longitudinal and trans-
Such lattices could be photoinduced by nondiffracting zeroVerse directions

order Bessel beams and offer many new opportunities in-

: i SO : 09 _ 1(#q #q)__da?
cluding control of soliton interactions in different lattice i—=-=|—S+—|-—=—=-pAHR(%,)q. (1)
rings and the possibility to set solitons into controllable ro- g€ 2\on" o) 1+90q?
tary motion.

It was demonstrated recently that the presence of shallof#€r:d(7,¢,é) is the slowly varying dimensionless complex
longitudinalmodulation of linear refractive index profoundly @mplitude of the light field, transversg ¢, and longitudinal
affects properties of solitons trapped in the guiding channef coordinates are scaled in terms of beam radius and diffrac-
of a one-dimensional optical latticel5,16. In particular, tion length, res.pectlvel)s'ls the saturation parameter, guid-
parametric amplification of transverse oscillations and amplii"d Parametep is proportional to the refractive index modu-
tude oscillations of spatial solitons is possible under approlation depth in the transverse direction, and the functions
priate conditions. The former effect can be potentially usedX(7:¢) andQ(¢) describe transverse and longitudinal refrac-
for controllable soliton steering and fine-tuning of soliton tive index profiles. Further, we suppose that longitudinal
inclination angle at the output face of the crystal. Two-Vvariation of refractive index is described by the harmonic
dimensional generalization of this technique is far from befunction Q(¢)=1-u cod€,£), where the parameten <1
ing trivial because of the presence of the second transver@d (), is the spatial frequency of longitudinal refractive in-
dimension, hence more complicated soliton trajectoriesdex modulation. We consider two types of transverse profiles
Moreover, despite the fact that in the absence of longitudina®f refractive index: the harmonic one withR(7,?)
modulation harmonic and Bessel lattices can support stabfecog(2,7)cosQ.{), where Q,,Q, are transverse spatial
two-dimensional solitons even in a cubic medium, the opennodulation frequencies, and the Bessel oRg(7,{)
question is whether a two-dimensional soliton is sufficiently=Jy((205,)?r), wherer=(7?+{?)? is the radius, and pa-
robust to survive under remarkable longitudinal modulationrameterb,, is the corresponding scaling fac{@ee Fig. 1a)
of the linear refractive index which is necessary for effectiveand Xb)]. The depth of refractive index modulation is as-

1539-3755/2005/18)/0366215)/$23.00 036621-1 ©2005 The American Physical Society



KARTASHOV, VYSLOUKH, AND TORNER PHYSICAL REVIEW E71, 036621(2005

6 Bessel lattice is radially symmetric and the position of its

intensity maximum coincides with the center of the lattice,
while in harmonic lattices the soliton can be supported by
either guiding site of the lattice. Here, we found correspond-
ing soliton profiles numerically using the standard relaxation
method. Typically we used a discretization scheme with
1024x 1024 points per soliton profile; the transverse step
was set todn»=d{=0.02. Zero boundary conditions were
implemented. The progressive iterations in the relaxation
method were carried out until the relative difference between
profiles on two successive iterations decreased belo®.10
The accuracy of calculations was checked by doubling the
number of points per profile as well as by expanding the
computation windowfor broad solitongs The energy flow of
solitons supported by Bessel and harmonic lattices versus
propagation constant is shown in Figcllfor different val-
S 3 a6 ues of the saturation parameter. For convenience of compari-
b son we selected the scaling factyy, for the Bessel lattice in
such a way that the first zero of the Bessel lattice coincides
FIG. 1. (a) Harmonic andb) Bessel optical lattices. Harmonic ith that of the harmonic onfFig. 1(a) and 1b)]. Energy
lattice is shown for2,=Q,=1, while Bessel lattice corresponds to flows Ug y Of solitons supported by lattices of both types
bi,=1.172.(c) Energy flow versus propagation cpnstant fqr solitonsgrOW mohotonically with increase d&f which indicates soli-
supported by Bessélg) and harmonidU,) lattices at different {1y stapility [14] for chosen lattice parameters. Dispersion
vall_Jes of s_aturat_lon param_eter god5. All quantities are plotted in curvesUg(b) and U (b) are quite similar and differ notably
arbitrary dimensionless units. only near a lower cutoff for soliton existence where the soli-
ton spreads over many lattice sites and exact periodicity of
sumed to be small compared with the unperturbed refractiviarmonic lattice and decaying behavior of the tail of the
indeX, and is of the order of nonlinear contribution due to theBesse| lattice p|ay a crucial role. As one can see from F|g

Kerr effect. Longitudinal modulation is supposed to be weakj(c), the cutoff for solitons supported by Bessel lattices is a
and smooth, which enables one to neglect the reflected wavgit |ower than that for solitons in harmonic lattices.

In practice, the refractive index modulation in the transverse \while exact solitons whose intensity maximum position
direction can be induced optically in photorefractive crystalscoincides with the maximum of the lattice will propagate in
with several interfering plane wavgs—4] or with nondif- 3 stable way without any distortions, the small transverse
fracting Bessel bearr{d4]. Longitudinal modulation can be displacement or tilt of the input soliton with respect to the
created in such media with spatially periodic backgroundattice causes oscillations of the beam center in the transverse
illumination along the¢ axis. Though in the case of real plane upon propagation. Further, for illustration of the main
photorefractive crystal the model equation describing solitorpropagation scenarios of solitons in modulated lattices we

propagation would be more complicated than EQ, since  gglve Eq.(1) with an input condition
the refractive index profile will also depend on the level of

saturation, we expect that simplified modd) adequately A(7,¢,€=0) =W(n—n,,{ - do)explia,n+ial), (4)

describes the main qualitative features of soliton oscillations. . . . I
Notice that the total energy flow wherew(n, ) is the exact soliton solutionyy, £, are initial

shifts along they- and{ axes, andv,, a, are input angles.

N To understand multidimensional dynamics of tilted or
U= |al“dnd¢, ) shifted soliton beams in optical lattices, one can use an ef-
e fective particle approacfl5,16, based on equations of mo-

-6

- o
[=>}

remains constant upon propagation. tion for integral coordinates of the beam center
In the absence of longitudinal refractive index modula- ) o
tion, Eqg. (1) possesses soliton solutiohg-14]. Here, we d—<ﬂ>:p%f f |q|2§dnd§
recall basic properties of fundamental solitons. Soliton solu- d¢? UlJ.J. " dn ’
tions can be found in the form(#,{, & =w(7n,))exgibé), (5)
wherew(n, ) is the real function, anth is the propagation d? Q) [~ (7, R
constant. Substitution of this expression into EL.yields d_52<§> = DTJ f ql a—gdﬂdi-
%(f—;: + f—;’) + % +pR(n,)w—bw=0. (3)  Here, integral coordinategn)=U"1[ [ 7|q>d»d{ and

(O)=UY"_[* {q]? dndZ, and Eq.(5) are derived in the
Mathematically, families of soliton solutions of E(B) are  limit of cubic nonlinearity atS— 0. The approach requires
defined by parameters S, b, and transverse configuration of the substitution of a trial expression for the beam profile in
the lattice. Thus, the fundamental soliton supported by thé¢he right sides of Eq.(5). We use Gaussian beam
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la(7,£,O|=do exd—x2(n—(m)Hexd~xZ({~(£)?], where
X X; are form factors and, is the amplitude. In the sim-
plest case of harmonic lattice, one gets

d2
d—§2<77> +[1 = cog€8) W62, cosQL)sin(Q, (1)) =0,

(6)
d2
d—§2<§> +[1 = p codQ€) W6, cod€d,(7))sin(£) = 0.

Here, the parameter

W = p expl— (%)) + Q2xD14], 7)

depends on the ratio between the characteristic lattice and
beam scales, as well as on the depth of the lattice. In opti-
cally induced lattices this parameter can be fine-tuned by
changing the lattice depth. This enables one to control dy-
namics of soliton motion effectively inside the lattice for the
same input profiles. Notice that other trial expressions for
beam profile lead to very similar equations for soliton center
coordinates. As one can see from Eg), there is a straight-
forward analogy between equations of soliton movement in
harmonic lattice and equations of motion for coupled para-
metrically driven pendulums. For the simplest case0 and
small initial soliton center displacements alon@nd{ axes,
oscillations in these directions are independent, almost peri-
odic, and occur at certain frequencies givenwgzﬂ,] and
Wgzﬂg, respectively, that can be termed frequencies of free
oscillations. Notice that for the Bessel lattice the frequency FIG. 2. (Color onling. (&) Transformation of soliton center os-
of free oscillations(), is unique because of the radial sym- cillations along ther axis into oscillations along th¢ axis in the
metry of the lattice. For the case of relatively narrow solitonsharmonic lattice without longitudinal refractive index modulation at
(bi2<x,.x,) this frequency can be roughly estimated as{!,={%=1 andp=5.8. Input conditions are=0.8, £,=0.08, @,
Qo”(phin)llzexd‘bnn/‘l)(f,], assuming thay, = x. =_a§=o. (b) Resonant parametric amplification of soliton o_scnlla—

However, even at=0 large-amplitude oscillations of the thﬂ_S along trjeg axls in Iongltudlnall_y_ modulate_d Bes;sel lattice at

soliton center along the- and { axes become coupled. This k_)|m-_1.172,p_5, #=0.1. Input conditions are,=0, {,=0.05, a,,

) . . . . =a,=0. In (a) and (b) soliton beams correspond =7 and S

IS an essgntlally new featqre of hNo-Fjlmensloan soliton os- 0.1. All quantities are plotted in arbitrary dimensionless units.
cillations in optical lattices in comparison with this phenom-

enon in one-dimensional lattic€s5]. If large-amplitude os-  oscillations. The simplest case corresponds to the absence of
cillations along then axis occur approximately at the same coupling betweeny- and{ oscillations. This can be achieved
frequency as small-amplitude ones along thexis (i.e.,  when the soliton is initially shifted along only one of the
when Q,=(,), the parametric resonance arises. Sucltransverse axes and oscillations occur in one plgfig.
parametric-type interaction opens an opportunity to trans2(b)]. Notice that growth of the oscillation amplitude leads to
form effectively large-amplitude; oscillations into oscilla-  diminishing of the instantaneous frequency, and the system
tions along thel axis[Fig. 2(@)]. This process repeats peri- escapes from the condition of parametric resonance. This
odically in ¢ and looks like amplitude beatings. Notice that results in periodic iré decay and growth of soliton oscilla-
under appropriate conditions predictions of the effective partions (or beatings In this case the effective particle ap-
ticle model[Eq. (6)] are in a reasonable agreement with re-proach also offers quite a realistic estimate for beating length
sults of direct integration of Eq1) with input conditiong4). and maximal value of transverse displacement of the soliton
Thus, at,u:O_, Q,=Q,=1, p=6, 7/0:_1, £=0.1, @,=;=0,  center. For example, gt=0.1, ,=Q,=1, p=6, 7=0.1,

and for a soliton beam correspondingate 7 andS=0.1, the  {,=0, «,=a,=0, and for a soliton withb=7, S=0.1, the
difference between oscillation beating lendth~47.9 ob- relative difference in calculation of beating length in the
tained from Eq.1) andL, obtained on the basis of E¢6)  frames of two approaches is around 11%, and accuracy of
for the Gaussian input beam with the same energy flow igalculation of the maximal value of transverse displacement
about 13%. of the soliton center is around 2.5%.

A more complicated situation occurs in lattices with lon-  Another opportunity to avoid the coupling between
gitudinal refractive index modulation. In such lattices theand{ oscillations is related with “selective” amplification of
soliton center starts to oscillate with exponentially growingoscillations in only one of the transverse directions. This
amplitude provided that the first parametric resonance corbecomes possible when the frequencies of free oscillations
dition Q.= 2(), is satisfied here,(), is the frequency of free for orthogonal axes are differertas in a harmonic lattice
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FIG. 4. (a) Snapshot images showing maximal soliton displace-
ments in positive and negative directions of thaxis in longitudi-
nally modulated Bessel lattice. Input conditions apg=0, g
=0.05, @,=a,=0. (b) Maximal soliton displacement in longitudi-
nally modulated Bessel lattice versus detuning. Input conditions are
79=0, {,=0.05,,=0.1, @;=0. In (a) and (b) b;,=1.172,p=5, u
=0.1, and soliton beams corresponchteo7 andS=0.1. All quanti-
ties are plotted in arbitrary dimensionless units.

instance, in the longitudinally modulated Bessel lattice the
initial displacement less than 1% of the beamwidth might be
amplified parametrically up to the beamwidth, as illustrated
in Fig. 4@ (the white circle shows the first zero of the
Bessel lattice Moreover, the parametric amplification can
be used for fine-tuning of the output tilt angle, while selec-
tive amplification can be used to enhance soliton oscillations
in the desired direction.
0505 The key result of this work is summarized in Figh
showing the resonance curve for transverse oscillations of a
FIG. 3. (Color onling. (a) Selective resonant parametric ampli- two-dimensional soliton in the longitudinally modulated
fication of soliton pscillgtions along the axis in longitudinally Bessel lattice, i.e., dependence of the ratio between maximal
rC“OOnCLLi‘t'%fS Qfer” mfg"i'gtg:eaﬂ_nz1_'84(1)1-(5:3?:;@/é;i(t)c')zn' (':r"a‘:]‘t‘;r Srmax anzd inpzu}/zzo values of transverse soliton displacement
trajectory in Ior?gitlj)dinally mri)dufated Bessel latticebgt=1.172, O=(m"+(0) . on relative frequency detuning=(2(q .
-Q,)/2Q,. This dependence has the form of a classical

p=5, ©u=0.1. Input conditions arey,=0, {,=0.05, ,=0.1, a,;=0. . . . )
In () and (b) soliton beams correspond to=7 and S=0.1. All asymmetric parametric resonance curve for an oscillator with

quantities are plotted in arbitrary dimensionless units. “soft” sine-type nonlinearity. The maximum value of para-
metric amplification is reached at a small negative value of

with (), # Q) and the parametric resonance condition is ful-frequency detuning. It should also be mentioned that the

filled along only one axis. Figure(8 illustrates the process resonance curve is relatively narrow, which allows highly

of the selective parametric amplification. selective amplification. We also want to stress that, for a
The most complicated situation occurs when the procesgxed frequency of longitudinal modulatif,, the paramet-

of parametric amplification is accompanied by coupling bevic resonance conditions can be achieved by tuning the lattice

tween large-amplitude oscillations along the and { axes. depthp, since frequency of free oscillatior®, depends on

To realize such a regime we shifted an input soliton along thene |attice depth, as follows from Eqg6) and (7). Notice

{ axis and simultaneously tilted it along theaxis. In the  that oscillations of two-dimensional soliton are accompanied

absence of longitudinal modulation a soliton follows a closedyy radiation, but its rate is substantially reduced with growth

elliptical (or circular in a particular cagérajectory, thus per-  of nonlinearity saturation and soliton energy flow.

forming steady spiraling. Parametric amplification results in | conclusion, we showed that in harmonic and Bessel

growth of the radius of the spiral trajectory on the initial |attices imprinted in Kerr-type saturable medium it is pos-

stage of propagation. Finally, the spiral trajectory transformssipje to achieve considerable parametric-type amplification

into a zigzag one, which means that oscillations alongrthe  of soliton oscillations in the guiding lattice channel. This

and { axes, which were initially phase shifted by 2, be-  effect may find applications for controllable soliton steering,

come phase match¢#ig. 3(b)]. After this stage of propaga- for detection of submicron beam displacement and extremely
tion the system escapes from the parametric resonance cogmall misalignments.

dition and the trajectory transforms into the elliptical one.

The parametric amplification of two-dimensional soliton  This work has been partially supported by the Govern-
oscillations can be effectively used for the detection of thement of Spain through Grant No. BFM2002-2861 and by the
very small displacement and/or tilt of the input beam. ForRamon-y-Cajal program.
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